The negation of the Boolean expression $ \sim \,s\, \vee \,\left( { \sim \,r\, \wedge \,s} \right)$ is equivalent to

  • [JEE MAIN 2019]
  • A

    $s\, \vee r$

  • B

    $ \sim \,s\, \wedge \, \sim \,r$

  • C

    $r$

  • D

    $s\, \wedge r$

Similar Questions

The statement $( p \rightarrow( q \rightarrow p )) \rightarrow( p \rightarrow( p \vee q ))$ is

  • [JEE MAIN 2020]

Let $\Delta \in\{\wedge, \vee, \Rightarrow, \Leftrightarrow\}$ be such that $(p \wedge q) \Delta((p \vee q) \Rightarrow q)$ is a tautology. Then $\Delta$ is equal to

  • [JEE MAIN 2022]

Consider the following statements 

$P :$ Suman is brilliant

$Q :$ Suman is rich

$R :$ Suman is honest

The negation of the statement "Suman is brilliant and dishonest if and only if Suman is rich" can be expressed as 

  • [AIEEE 2011]

The contrapositive of the statement "If I reach the station in time, then I will catch the train" is 

  • [JEE MAIN 2020]

The negation of the statement

"If I become a teacher, then I will open a school", is

  • [AIEEE 2012]