The negation of the Boolean expression $ \sim \,s\, \vee \,\left( { \sim \,r\, \wedge \,s} \right)$ is equivalent to
$s\, \vee r$
$ \sim \,s\, \wedge \, \sim \,r$
$r$
$s\, \wedge r$
$\left(p^{\wedge} r\right) \Leftrightarrow\left(p^{\wedge}(\sim q)\right)$ is equivalent to $(\sim p)$ when $r$ is.
Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and $\mathrm{D}$ be four non-empty sets. The contrapositive statement of "If $\mathrm{A} \subseteq \mathrm{B}$ and $\mathrm{B} \subseteq \mathrm{D},$ then $\mathrm{A} \subseteq \mathrm{C}^{\prime \prime}$ is
Consider the following statements :
$A$ : Rishi is a judge.
$B$ : Rishi is honest.
$C$ : Rishi is not arrogant.
The negation of the statement "if Rishi is a judge and he is not arrogant, then he is honest" is
The statement $p → (p \leftrightarrow q)$ is logically equivalent to :-
The contrapositive of $(p \vee q) \Rightarrow r$ is